奥数网
兰州站
您的位置:奥数兰州站 > 小升初 > 小升初练习题
  • 质数与合数 质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。 合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。 质因数:如果某个质数是某个数的约数,那么这个质数叫做
  • 约数与倍数 约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。 公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。 最大公约数的性质: 1、几个数都除以
  • 数的整除 一、基本概念和符号: 1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。 2、常用符号:整除符号 | ,不能整除符号 ;因为符号 ∵ ,
  • 余数及其应用 基本概念:对任意自然数a、b、q、r,如果使得a b=q r,且0 r b,那么r叫做a除以b的余数,q叫做a除以b的不完全商。 余数的性质: ①余数小于除数。 ②若a、b除以c的余数相同,则c|a-b或c|b-a。 ③a与b的
  • 余数、同余与周期 一、同余的定义: ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。 ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a b(mod m),读作a同余于b模m。 二、同余的性质: ①
  • 分数与百分数的应用 基本概念与性质: 分数:把单位 1 平均分成几份,表示这样的一份或几份的数。 分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 分数单位:把单位 1 平均分成几
  • 分数大小的比较 基本方法: ①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。 ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。 ③基准数法:确定一个标准,
  • 完全平方数 完全平方数特征: 1. 末位数字只能是:0、1、4、5、6、9;反之不成立。 2. 除以3余0或余1;反之不成立。 3. 除以4余0或余1;反之不成立。 4. 约数个数为奇数;反之成立。 5. 奇数的平方的十位数字为偶数
  • 比和比例 比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。 比值:比的前项除以后项的商,叫做比值。 比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。 比
  • 综合行程 基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系. 基本公式:路程=速度 时间;路程 时间=速度;路程 速度=时间 关键问题:确定运动过程中的位置和方向。 相遇问题:速
  • 工程问题 基本公式: ①工作总量=工作效率 工作时间 ②工作效率=工作总量 工作时间 ③工作时间=工作总量 工作效率 基本思路: ①假设工作总量为 1 (和总工作量无关); ②假设一个方便的数为工作总量(一般是它们
  • 逻辑推理 基本方法简介: ①条件分析 假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,
  • 几何面积 基本思路: 在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积
  • 时钟问题 快慢表问题 基本思路: 1、按照行程问题中的思维方法解题; 2、不同的表当成速度不同的运动物体; 3、路程的单位是分格(表一周为60分格); 4、时间是标准表所经过的时间; 5、合理利用行程问题中的比例
  • 时钟问题 钟面追及 基本思路:封闭曲线上的追及问题。 关键问题: ①确定分针与时针的初始位置; ②确定分针与时针的路程差; 基本方法: ①分格方法: 时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针
  • 浓度与配比 经验总结:在配比的过程中存在这样的一个反比例关系,进行混合的两种溶液的重量和他们浓度的变化成反比。 溶质:溶解在其它物质里的物质(例如糖、盐、酒精等)叫溶质。 溶剂:溶解其它物质的物质(例如
  • 经济问题 利润的百分数=(卖价-成本) 成本 100%; 卖价=成本 (1+利润的百分数); 成本=卖价 (1+利润的百分数); 商品的定价按照期望的利润来确定; 定价=成本 (1+期望利润的百分数); 本金:储蓄的金额; 利
  • 简单方程 代数式:用运算符号(加减乘除)连接起来的字母或者数字。 方程:含有未知数的等式叫方程。 列方程:把两个或几个相等的代数式用等号连起来。 列方程关键问题:用两个以上的不同代数式表示同一个数。 等式
  • 不定方程 一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程; 常规方法:观察法、试验法、枚举法; 多元不定方程:含有三个未知数的方程叫三元一次方程,
  • 循环小数 一、把循环小数的小数部分化成分数的规则 ①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。 ②混循环小数小数部分
  • 1、某商品按25%的利润定价,后来九折出售,结果每天售出的件数增加了1.5倍,那么每天这种商品的总利润比降价前增加了百分之几? 2、两城相距930千米,客货两车同时从两城相向开出,经过6小时两车相遇.客车平均每小
  • 1、小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。如果利息率为20%,那么,到明年十月一日,小明最多可以从银行取出多少钱? 2、一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256
  • 1、 甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。 2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了
  • 1、一个水地装有进水管和出水管,单开进水管40分可以将空池注满;单开出水管1小时可把满油水放完.现同时打开两管,多少小时可将它池注满? 2、一架飞机从甲城飞往乙城,每分飞行12千米,26分飞完全程的30/13,全部
  • 合理安排 货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车? 点击下一页查看答案 解答:至少需要5辆汽车 【小结】因为每一只箱子的重
  • 盈利问题 某商店将某种DVD按进价提高35%后,打出 九折优惠酬宾,外送50元出租车费 的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元? 点击下一页查看答案 解答: 定价是进价的1+35% 135% 90%=121.5% 208
  • 小木桥问题 A、B两个村子,中间隔了一条小河(如下图),现在要在小河上架一座小木桥,使它垂直于河岸.请你在河的两岸选择合适的架桥地点,使A、B两个村子之间路程最短. 点击下一页查看答案 解答:因为桥垂直于
  • 年龄问题:已知两人的年龄,求若干年前或若干年后两人年龄之间倍数关系的应用题,叫做年龄问题。 年龄问题的三个基本特征: ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄
  • 归一问题的基本特点: 问题中有一个不变的量,一般是那个 单一量 ,题目一般用 照这样的速度 等词语来表示。 关键问题:根据题目中的条件确定并求出单一量; 复合应用题中的某些问题,解题时需先根据已知条件,求出
  • 植树问题 基本类型: 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有一端植树 封闭曲线上植树 基本公式: 棵数=段数+1 棵距 段数=总
  • 鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找
  • 盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。 基本思路:先将两种
  • 牛吃草问题 基本思路:假设每头牛吃草的速度为 1 份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。 基本特点:原草量和新草生长速度是不变的; 关键问题
  • 平均数 基本公式:①平均数=总数量 总份数 总数量=平均数 总份数 总份数=总数量 平均数 ②平均数=基准数+每一个数与基准数差的和 总份数 基本算法: ①求出总数量以及总份数,利用基本公式①进行计算。 ②基准数法
  • 周期循环与数表规律 周期现象:事物在运动变化的过程中,某些特征有规律循环出现。 周期:我们把连续两次出现所经过的时间叫周期。 关键问题:确定循环周期。 闰 年:一年有366天; ①年份能被4整除;②如果年份能
  • 抽屉原理 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。 例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0 ②4=3+1+0 ③4=2+
  • 六年奥数知识讲解:定义新运算 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照
  • 数列求和 等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。 基本概念:首项:等差数列的第一个数,一般用a1表示; 项数:等差数列的所有数的个数,一般用n表示; 公差:数列中任
  • 二进制及其应用 十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以 234=200+30+4=2 102+3 10+4。 =An 10n-1+An-1 10n-2+An-2 10n-3+An-3 10n-4+An-4
  • 加法乘法原理和几何计数 加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法 ,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方