奥数网 奥数兰州站 > 小升初 > 小升初资讯 > 正文

小升初分班考试奥数是“重头”(2)

来源:兰州奥数网 2011-08-05 10:04:19

  解题思路三:排除法

  典型题目1:张涛、李明和赵亮三人住在三个相邻的房间内,他们之间满足这样的条件:

  (1)每个人喜欢一种宠物,一种饮料,一种啤酒,不是兔就是猫,不是果粒橙就是葡萄汁,不是青岛就是哈尔滨;(2)张涛住在喝哈尔滨者的隔壁;(3)李明住在爱兔者的隔壁;(4)赵亮住在喝果粒橙者的隔壁;(5)没有一个喝青岛者喝果粒橙;(6)至少有一个爱猫者喜欢喝青岛啤酒;(7)至少有一个喝葡萄汁者住在一个爱兔者的隔壁;(8)任何两人的相同爱好不超过一种。

  问:住中间房间的人是谁?

  专家解析:根据条件1,每个人的三爱好组合必是下列组合之一:A。葡萄汁,兔,哈尔滨;B。葡萄汁,猫,青岛;C。果粒橙,兔,青岛;D。果粒橙,猫,哈尔滨;E。葡萄汁,兔,青岛;F。葡萄汁,猫,哈尔滨;G。果粒橙,兔,哈尔滨;H。果粒橙,猫,青岛。根据条件5,可以排除C和H。

  于是,根据条件6,B是某个人的三嗜好组合;根据条件8,E和F可以排除;再根据条件8,D和G不可能分别是某两人的三嗜好组合;因此A必定是某个人的三嗜好组合;然后根据条件8,可以排除G;于是余下来的D必定是某个人的三爱好组合。

  根据2、3和4,住房居中的人符合下列情况之一:喝青岛而又爱兔,2.喝青岛而又喝果粒橙,3.爱兔而又喝果粒橙。既然这三人的三爱好组合分别是A、B和D,那么住房居中者的三爱好组合必定是A或者D,那么三个人的房间排序如下所示:B、A、D或B、D、A。

  根据条件7,可排除D;因此,根据条件4,赵亮的住房居中。

  典型题目2:有10个人站成一队,每个人头上都戴着一顶帽子,帽子有3顶红的,4顶黑的,5顶白的。每个人不能看到自己的帽子,只能看到前面的人的,最后一个人能够看到前面9个人的帽子颜色,倒数第二个人能够看到前面8个人的帽子颜色,以此类推,第一个人什么也看不到。

  现在从最后面的那个人开始,问他是不是知道自己所戴帽子的颜色,如果他回答不知道,就继续问前面的人。如果后面的9个人都不知道,那么最前面的人知道自己颜色的帽子吗?为什么?

  专家解析:最后一个人不知道自己所戴帽子的颜色,那么他的帽子和剩下的两顶帽子属于两种以上的颜色,通过排除,知道他的帽子和剩下的两顶帽子分属于三种颜色,第九个人不能判断自己所戴帽子的颜色,也是如此,以此类推,第一个人就能知道自己帽子的颜色为白色。

  解题思路四:分析法

  典型题目:两个直径分别是2和4的圆环,如果小圆在大圆内部绕大圆转一周,那么小圆自身转了几周?如果在大圆的外部转,小圆自身又要转几周呢?

  专家解析:两圆的直径分别为2、4,那么半径分别为1、2。假如把大圆剪开并拉直,那么小圆绕大圆转一周,就变成从直线的一头移动到另一头。因为这条直线长就是大圆的周长,是小圆周长的2倍,所以小圆需要滚动2圈。

  但现在小圆在沿大圆滚动的同时,自身还要转动。小圆在沿着大圆滚动1周并回到原出发点的同时,小圆自身也转了1周。

  如果小圆在大圆的内部滚动,其自转的方向与滚动的转向相反,因此小圆自身转了1周;如果小圆在大圆的外部滚动,其自转的方向与滚动的转向相同,因此小圆自身转了3周。

  解题思路五:观察法

  典型题目:观察图形:○●○●●○●●●●○●●●●●●●●○……前200个珠子中有多少个黑色的?

  专家解析:看图形可知,白色珠子一次一个,黑珠子除第一个外,其余是按照2的n次方的规律排下去。第一块黑珠子有1个,第二块有2个,第三块有2*2=4个,第四块有2*2*2=8个,第五块有2*2*2*2=16个,第六块有2*2*2*2*2=32个,第七块有2*2*2*2*2*2=64个,第八块有2*2*2*2*2*2*2=128个。

  这样可推断出,前200个珠子中有8个白的,有192个是黑的。

  

我要投稿